
ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 4, April 2014

Copyright to IJARCCE www.ijarcce.com 6355

To Manage A Scalable Distributed System Using

Dynamic Configuration

M.Deepika
1
, R.Sumathi

2

M.Deepika, PG scholar-(ME-CSE), Gnanamani College of Technology, Namakkal, T.N, India1

R.Sumathi, AP/CSE, Gnanamani College of Technology, Namakkal, T.N, India2

Abstract: This paper presents a solution for distributed system that must preserve critical state in spite of malicious

attacks and Byzantine failures. In an existing Byzantine replication protocols satisfy the runtime performance. There

have been proposals for dynamic replication protocols that tolerate crash failures and provide an efficient runtime

performance. We present a new Byzantine fault-tolerant replication protocol that meets the new correctness criterion

and evaluate its performance in fault-free execution and when under attack.

Keywords: Byzantine fault-tolerance, distributed system, storage system, system membership.

I. INTRODUCTION

In an existing Byzantine fault-tolerance protocols satisfy

the system runtime performance and also system safety

and liveness[1]. In this paper, we point out that in many

systems, a small number of Byzantine processors can

degrade performance to a level far below what would be

achievable with only correct processors. Specifically, the

Byzantine processors can cause the system to make

progress at an extremely slow rate, even when the network
is stable and could support much higher throughput. This

paper provides a solution to distributed systems. Our

approach is unique because

 It provides the abstraction of a globally consistent

view of the system membership.

 It is designed to work at large scale. Support for large

scale is essential since systems.

 It is secure against Byzantine (arbitrary) faults.

Handling Byzantine faults is important because it

captures the kinds of complex failure modes that have

been reported for our target deployments.

Our solution has two parts. The first is a membership
service (MS) that tracks and responds to membership

changes. The MS works mostly automatically, and

requires only minimal human intervention; this way we

can reduce manual configuration errors, which are a major

cause of disruption in computer systems.

Therefore, the second part of our solution addresses the

problem of how to reconfigure applications automatically

as system membership changes; we present a storage

system, dBQS, which provides Byzantine-fault-tolerant

replicated storage with strong consistency.

II. EXISTING SYSTEM

In Existing System, replication enhanced the reliability of

internet services to store the data‟s. Preserved data to be

secured from software errors. But, existing Byzantine-

fault-tolerant systems is a static set of replicas. It has no

limitations. So scalability is inconsistency. So, these data‟s

are not came for long-lived systems. The existence of the

following cryptographic techniques that an adversary

cannot subvert: a collision resistant hash function, a public

key cryptography scheme, and forward secure signing key

and the existence of a proactive threshold signature

protocol[2,3].

III. PROBLEM DESCRIPTION

However, existing Byzantine-fault-tolerant systems either

assume a static set of replicas or have limitation. So,

scalability is inconsistency. This can be problematic in

long-lived, large scale systems where system membership
is likely to change during the system lifetime.

IV. PROPOSED SYSTEM

In Proposed System, has two parts. The first is a

membership service (MS) that tracks and responds to

membership changes. The MS works mostly

automatically, and requires only minimal human

intervention; this way we can reduce manual configuration

errors, which are a major cause of disruption in computer

systems periodically, the MS publishes a new system

membership; in this way it provides a globally consistent

view of the set of available servers, The choice of strong
consistency makes it easier to implement applications,

since it allows clients and servers to make consistent local

decision about which servers are currently responsible for

which parts of the service.

Fig.1.Service Architecture

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 4, April 2014

Copyright to IJARCCE www.ijarcce.com 6356

The second part of our solution addresses the problem of

how to reconfigure applications automatically as system

membership changes. We present a storage system, dBQS

that provides Byzantine-fault-tolerant replicated storage
with strong consistency.

V. MS FUNCTIONALITY

A. Membership Change Requests

The MS works mostly automatically, and requires only

minimal human intervention, this way we can reduce

manual configuration errors, which are a major cause of

disruption in computer systems.

The MS responds to requests to add and remove servers.

We envision a managed environment with admission

control since; otherwise, the system would be vulnerable

to a Sybil attack where an adversary floods the system

with malicious servers.

Thus, we assume servers are added by a trusted authority

that signs certificates used as parameters to these requests.

The certificate for an ADD request contains the network

address and port number of the new server, as well as its

public key, whereas the certificate to REMOVE a node

identifies the node whose membership is revoked using its

public key. The MS assigns each server a unique node ID

uniformly distributed in a large circular ID space, which

enables the use of consistent hashing to assign
responsibility for work in some of our MS protocols;

applications can also these IDs if desired.

B. Membership Control

The initial work on group communication systems only

tolerated crash failures. Byzantine failures are handled by

the Rampart and Secure Ring[4]systems. The membership

service has the same goals as the group membership

modules present in group communication systems. Adding

and removing processes in these systems is a heavyweight

operation: all nodes in the system execute a three-phase
Byzantine agreement protocol that is introduced by these

systems, which scales poorly with system size. We get

around this limitation by treating most nodes in the system

as clients and using only a small subset of system nodes to

carry out the protocol. Thus, our solution is scalable with

the number system nodes, which are only clients of the

protocols. Guerraoui and Schiper define a generic

consensus service in a client-server, crash-failure setting,

where servers run a consensus protocol and clients use this

service as a building block.

The paper mentions as an example that the servers could

be used to track membership for the clients; it also

mentions the possibility of the service being implemented

by a subset of clients. However, the paper does not

provide any details of how the membership service would

work. We show how to implement a membership service

that tolerates Byzantine faults, and discuss important

details such as how to reconfigure the service itself. Peer-

to-peer routing overlays can be seen as a loosely-

consistent group membership scheme: by looking up a

certain identifier, we can determine the system

membership in a neighbourhood of the ID space near that

identifier. Castro et al. proposed extensions to the Pastry

peer-to-peer lookup protocol to make it robust against

malicious attacks. Peer-to-peer lookups are more scalable

and resilient to chum than our system, but unlike our
membership service, do not provide a consistent view of

system membership. As a result concurrent lookups may

produce different “correct” results. Fireflies is a

Byzantine-fault-tolerant, one-hop (full membership)

overlay. Fireflies uses similar techniques to ours(such as

assigning committees that monitor nodes and sign eviction

certificates). However, it does not provide a consistent

view of membership, but rather ensures probabilistic

agreement, making it more challenging to build

applications that provide strong semantic. Census includes

a membership service and provides consistent views based
on epochs; it builds on the techniques described in these

papers for the MS, both to end the epoch and to allow the

MS to move in the next epoch. It is designed to work for

very large systems, and divides the membership into

“regions” based on coordinates. Each region tracks its own

membership changes and reports to the MS toward the end

of the epoch; the MS then combines these reports to

determine the membership during the next epoch and

disseminates the changes using multicast.

C. Liveness

To provide maximum period of time or liveness, replicas

must move to a new view if they are unable to execute a

request. We can achieve these goals by following three

ways[5].

First, to avoid starting a view change too soon, a replica
that multicasts a view change message for view v+1 waits

for 2f+1 and then it will starts the timer after some time T.

If the timer expires before it receives a valid new view

message for v+1 or before it executes a request in the new

view that it had not executed previously, it starts the view

change for view v+2 but this time it will wait 2T before

starting a view change for view v+3.

Second, if a replica receives a set of f+1 valid view change

messages from other replicas for views greater than its

current view, it sends a view change message for the

smaller view in the set, even if its timer has not expired,
this prevents it from starting the next view change too late.

Third, faulty replicas are unable to impede progress by

forcing frequent view changes. A faulty replica cannot

cause a view change by sending a view-change message

,because a view change will happen only if at least 1

replicas send view-change messages, but it can cause a

view change when it is the primary.

D. Safety

The view-change protocol ensures that non-faulty replicas

also agree on the sequence number of requests that commit

locally in different views at different replicas. A request m

commits locally at a non-faulty replica with sequence

number in view only if committed (m,y,n) is true. This

means that there is a set 1 containing at least f+1 non-

faulty replicas such that prepared (m,y,n,i) is true for

every replica in the set. Non-faulty replicas will not accept

a pre-prepare for View v’>v without having received a

new-view message for (since only at that point do they

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 4, April 2014

Copyright to IJARCCE www.ijarcce.com 6357

enter the view). But any correct new-view messages from

every replica in a set R2 of 2f+1 replicas. Since there are

3f+1 replicas, R1 and R2 must intersect in at least one

replica λ that is not faulty. k‟s view-change message will
ensure that the fact that prepared in a previous view is

propagated to subsequent views, unless the new-view

message contains a view-change message with a stable

checkpoint with a sequence number higher than n [6].

E. Correctness

Here, we describe correctness conditions for MS

(Membership Service) and dBQS. Those conditions are

given below.

(1) Correctness condition for the MS. For each epoch e,

the MS replica group for e must contain no more than
fMS faulty replicas up until the moment when the last

non-faulty MS replica finishes that epoch, discards its

secret threshold signature share, and advances its

forward-secure signing key.

(2) Correctness condition for dBQS. For any replica

group ge for epoch e that is produce during the

execution of the system, ge contains no more that f

faulty replicas up until the later of the following two

events: 1) every non-faulty node in epoch e+1 that

needs state from ge has completed state transfer, or 2)

the last client freshness certificate for epoch or any

earlier epoch expires at any non-faulty client c that
accesses data stored by ge [7].

F. Storage System

Ocean Store is a two-tiered system BFT storage system.

The primary tier of replicas offers strong consistency for

mutable data using the PBFT protocol and the secondary

tier serves static data, and thus, has simpler semantics.

There have been proposals for dynamic replication

protocols that tolerate crash failures.

VI. METHODOLOGIES

A. Reliable Automatic Reconfiguration

In this Module, it provides the abstraction of globally

consistent view of the system membership. This

abstraction simplifies the design of applications that use it,

since it allows different nodes to agree on which servers

are responsible for which subset of the service. It is

designed to work at large scale, e.g., tens or hundreds of

thousands of servers. Support for large scale is essential
since systems today are already large and we can expect

them to scale further. It is secure against Byzantine

(arbitrary) faults. Handling Byzantine faults is important

because it captures the kinds of complex failure modes

that have been reported for our target deployments.

B. Tracking Membership Service

In this Module, is only part of what is needed for

automatic reconfiguration. We assume nodes are

connected by an unreliable asynchronous network like the

Internet, where messages may be lost, corrupted, delayed,
duplicated, or delivered out of order. While we make no

synchrony assumptions for the system to meet its safety

guarantees, it is necessary to make partial synchrony

assumptions for liveness. The MS describes membership

changes by producing a configuration, which identifies the

set of servers currently in the system, and sending it to all

servers. To allow the configuration to be exchanged

among nodes without possibility of forgery, the MS

authenticates it using a signature that can be verified with
a will-known public key.

C. Byzantine Fault Tolerance

In this Module, to provide Byzantine fault tolerance for

the MS, we implement it with group replicas executing the

PBFT state machine replication protocol.

These MS replicas can run on server nodes, but the size of

the MS group is small and independent of the system size.

So, to implement from tracking service,

Add-It takes a certificate signed by the trusted authority

describing the node adds the node to the set of system

members.

Freshness-It receives a freshness challenge; the reply

contains the nonce and current epoch number signed by

the MS.

Probe-The MS sends probes to servers periodically. It

serves respond with a simple acknowledgement or when a

nonce is sent, by repeating the nonce and signing the

response.

New Epoch-It informs nodes of a new epoch. Here

certificate vouching for the configuration and changes

represents the delta in the membership.

D. Dynamic Replication

In this Module, to prevent attacker from predicting

1. Choose the random number.

2. Sign the configuration using the old shares.

3. Carry out a re-sharing of the MS keys with the new

MS members.

4. Discard the old shares.

VII. CONCLUSION

This paper presents a complete solution for building large

scale, long-lived systems that must preserve critical state

in spite of malicious attacks and Byzantine failures. The

membership service tracks the current system membership

in a way that is mostly automatic, to avoid human

configuration errors. It is resilient to arbitrary faults of the

nodes that implement it, and is reconfigurable, allowing us

to change the set of nodes that implement the MS when

old nodes fail, or periodically to avoid a targeted attack.

REFERENCES
[1] Yair Amir and Jonathan Kirsch, ”Prime: Byzantine Replication

under Attack”, July 2011.

[2] M.Bellare and S.Miner, ”A Forward-Secure Digital Signature

Scheme”, Proc. 19
th
 Ann. Int‟l Cryptology Conf. Advances in

Cryptology(CRYPO ‟99),pp.431-448,1999.

[3] R.Canetti, S.Halevi and J.Katz, ”A Forward-Secure Public-Key

Encryption Scheme”, Proc. Conf. Advances in Cryptology

(EUROCRYPT ‟03), pp.255-271,2003.

[4] K.Kihlstrom L.Moser,and P.Melliar-Smith, ”The Secure Ring

Protocols for Securing Group Communication”, Proc. Hawaii Int‟l

Conf. System Sciences,Jan.1998.

[5] M.Castro, ”Practical Byzantine Fault Tolerance”, PhD dissertation,

Massachusetts Inst. of Technology,2001.

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 4, April 2014

Copyright to IJARCCE www.ijarcce.com 6358

[6] M.Castro and B.Liskov, “Practical Byzantine Fault Tolerance”,

Proc. Third Symp. Operating Systems Design and Implementation

(OSDI ‟99), Feb. 1999.

[7] L.Alvisi, D.Malkhi, E.Pierce, M.Reiter, and R.Wright, “Dynamic

Byzantine Quorum Systems”, Proc. Int‟l Conf. Dependable

Systems and Networks (DSN ‟00), pp. 283-292, June 2000.

[8] N. Lynch and A.A.Shvartsman, “Rambo: A Reconfigurable Atomic

Memory Service”, Proc. 16
th
 Int‟l Symp. Distributed Computing

(DISC ‟02), 2002.

[9] R.C.Merkle, “A Digital Signature Based on a Conventional

Encryption Function”, Proc. Conf. Theory and Applications of

Cryptographic Techniques on Advances in Cryptology (CRYPTO

‟87), 1987.

[10] J.P.Martin and L.Alvisi, “A Framework for Dynamic Byzantine

Storage”, Proc. Int‟l Conf. Dependable Systems and Networks

(DSN „04), June 2004.

