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Abstract: This paper presents a solution for distributed system that must preserve critical state in spite of malicious 

attacks and Byzantine failures. In an existing Byzantine replication protocols satisfy the runtime performance. There 

have been proposals for dynamic replication protocols that tolerate crash failures and provide an efficient runtime 

performance. We present a new Byzantine fault-tolerant replication protocol that meets the new correctness criterion 

and evaluate its performance in fault-free execution and when under attack. 
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I. INTRODUCTION 

In an existing Byzantine fault-tolerance protocols satisfy 

the system runtime performance and also system safety 

and liveness[1]. In this paper, we point out that in many 

systems, a small number of Byzantine processors can 

degrade performance to a level far below what would be 

achievable with only correct processors. Specifically, the 

Byzantine processors can cause the system to make 

progress at an extremely slow rate, even when the network 
is stable and could support much higher throughput. This 

paper provides a solution to distributed systems. Our 

approach is unique because 

 It provides the abstraction of a globally consistent 

view of the system membership. 

 It is designed to work at large scale. Support for large 

scale is essential since systems. 

 It is secure against Byzantine (arbitrary) faults. 

Handling Byzantine faults is important because it 

captures the kinds of complex failure modes that have 

been reported for our target deployments. 

Our solution has two parts. The first is a membership 
service (MS) that tracks and responds to membership 

changes. The MS works mostly automatically, and 

requires only minimal human intervention; this way we 

can reduce manual configuration errors, which are a major 

cause of disruption in computer systems. 

Therefore, the second part of our solution addresses the 

problem of how to reconfigure applications automatically 

as system membership changes; we present a storage 

system, dBQS, which provides Byzantine-fault-tolerant 

replicated storage with strong consistency. 

 

II. EXISTING SYSTEM 

In Existing System, replication enhanced the reliability of 

internet services to store the data‟s.  Preserved data to be 

secured from software errors. But, existing Byzantine-

fault-tolerant systems is a static set of replicas. It has no 

limitations. So scalability is inconsistency. So, these data‟s 

are not came for long-lived systems. The existence of the 

following cryptographic techniques that an adversary 

cannot subvert: a collision resistant hash function, a public 

key cryptography scheme, and forward secure signing key  

 

and the existence of a proactive threshold signature 

protocol[2,3]. 

 

III. PROBLEM DESCRIPTION 

However, existing Byzantine-fault-tolerant systems either 

assume a static set of replicas or have limitation. So, 

scalability is inconsistency. This can be problematic in 

long-lived, large scale systems where system membership 
is likely to change during the system lifetime. 

 

IV. PROPOSED SYSTEM 

In Proposed System, has two parts. The first is a 

membership service (MS) that tracks and responds to 

membership changes. The MS works mostly 

automatically, and requires only minimal human 

intervention; this way we can reduce manual configuration 

errors, which are a major cause of disruption in computer 

systems periodically, the MS publishes a new system 

membership; in this way it provides a globally consistent 

view of the set of available servers, The choice of strong 
consistency makes it easier to implement applications, 

since it allows clients and servers to make consistent local 

decision about which servers are currently responsible for 

which parts of the service. 
 

 
Fig.1.Service Architecture 
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The second part of our solution addresses the problem of 

how to reconfigure applications automatically as system 

membership changes. We present a storage system, dBQS 

that provides Byzantine-fault-tolerant replicated storage 
with strong consistency. 

 

V.  MS FUNCTIONALITY 

A. Membership Change Requests 

The MS works mostly automatically, and requires only 

minimal human intervention, this way we can reduce 

manual configuration errors, which are a major cause of 

disruption in computer systems. 
 

The MS responds to requests to add and remove servers. 

We envision a managed environment with admission 

control since; otherwise, the system would be vulnerable 

to a Sybil attack where an adversary floods the system 

with malicious servers. 
 

Thus, we assume servers are added by a trusted authority 

that signs certificates used as parameters to these requests. 

The certificate for an ADD request contains the network 

address and port number of the new server, as well as its 

public key, whereas the certificate to REMOVE a node 

identifies the node whose membership is revoked using its 

public key. The MS assigns each server a unique node ID 

uniformly distributed in a large circular ID space, which 

enables the use of consistent hashing to assign 
responsibility for work in some of our MS protocols; 

applications can also these IDs if desired. 

 

B. Membership Control 

The initial work on group communication systems only 

tolerated crash failures. Byzantine failures are handled by 

the Rampart and Secure Ring[4]systems. The membership 

service has the same goals as the group membership 

modules present in group communication systems. Adding 

and removing processes in these systems is a heavyweight 

operation: all nodes in the system execute a three-phase 
Byzantine agreement protocol that is introduced by these 

systems, which scales poorly with system size. We get 

around this limitation by treating most nodes in the system 

as clients and using only a small subset of system nodes to 

carry out the protocol. Thus, our solution is scalable with 

the number system nodes, which are only clients of the 

protocols. Guerraoui and Schiper define a generic 

consensus service in a client-server, crash-failure setting, 

where servers run a consensus protocol and clients use this 

service as a building block. 

 
The paper mentions as an example that the servers could 

be used to track membership for the clients; it also 

mentions the possibility of the service being implemented 

by a subset of clients. However, the paper does not 

provide any details of how the membership service would 

work. We show how to implement a membership service 

that tolerates Byzantine faults, and discuss important 

details such as how to reconfigure the service itself. Peer-

to-peer routing overlays can be seen as a loosely-

consistent group membership scheme: by looking up a 

certain identifier, we can determine the system 

membership in a neighbourhood of the ID space near that 

identifier. Castro et al. proposed extensions to the Pastry 

peer-to-peer lookup protocol to make it robust against 

malicious attacks. Peer-to-peer lookups are more scalable 

and resilient to chum than our system, but unlike our 
membership service, do not provide a consistent view of 

system membership. As a result concurrent lookups may 

produce different “correct” results. Fireflies is a 

Byzantine-fault-tolerant, one-hop (full membership) 

overlay. Fireflies uses similar techniques to ours(such as 

assigning committees that monitor nodes and sign eviction 

certificates). However, it does not provide a consistent 

view of membership, but rather ensures probabilistic 

agreement, making it more challenging to build 

applications that provide strong semantic. Census includes 

a membership service and provides consistent views based 
on epochs; it builds on the techniques described in these 

papers for the MS, both to end the epoch and to allow the 

MS to move in the next epoch. It is designed to work for 

very large systems, and divides the membership into 

“regions” based on coordinates. Each region tracks its own 

membership changes and reports to the MS toward the end 

of the epoch; the MS then combines these reports to 

determine the membership during the next epoch and 

disseminates the changes using multicast. 
 

C. Liveness 

To provide maximum period of time or liveness, replicas 

must move to a new view if they are unable to execute a 

request. We can achieve these goals by following three 

ways[5]. 
 

First, to avoid starting a view change too soon, a replica 
that multicasts a view change message for view v+1 waits 

for 2f+1 and then it will starts the timer after some time T. 

If the timer expires before it receives a valid new view 

message for v+1 or before it executes a request in the new 

view that it had not executed previously, it starts the view 

change for view v+2 but this time it will wait 2T before 

starting a view change for view v+3. 

Second, if a replica receives a set of f+1 valid view change 

messages from other replicas for views greater than its 

current view, it sends a view change message for the 

smaller view in the set, even if its timer has not expired, 
this prevents it from starting the next view change too late. 

Third, faulty replicas are unable to impede progress by 

forcing frequent view changes. A faulty replica cannot 

cause a view change by sending a view-change message 

,because a view change will happen only if at least 1 

replicas send view-change messages, but it can cause a 

view change when it is the primary. 
 

D. Safety 

The view-change protocol ensures that non-faulty replicas 

also agree on the sequence number of requests that commit 

locally in different views at different replicas. A request m 

commits locally at a non-faulty replica with sequence 

number in view only if committed (m,y,n) is true. This 

means that there is a set 1 containing at least f+1 non-

faulty replicas such that prepared (m,y,n,i) is true for 

every replica in the set. Non-faulty replicas will not accept 

a pre-prepare for View v’>v without having received a 

new-view message for (since only at that point do they 
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enter the view). But any correct new-view messages from 

every replica in a set R2 of 2f+1 replicas. Since there are 

3f+1 replicas, R1 and R2 must intersect in at least one 

replica λ that is not faulty. k‟s view-change message will 
ensure that the fact that prepared in a previous view is 

propagated to subsequent views, unless the new-view 

message contains a view-change message with a stable 

checkpoint with a sequence number higher than n [6]. 
 

E. Correctness 

Here, we describe correctness conditions for MS 

(Membership Service) and dBQS. Those conditions are 

given below. 
 

(1) Correctness condition for the MS. For each epoch e, 

the MS replica group for e must contain no more than 
fMS faulty replicas up until the moment when the last 

non-faulty MS replica finishes that epoch, discards its 

secret threshold signature share, and advances its 

forward-secure signing key. 

(2) Correctness condition for dBQS. For any replica 

group ge for epoch e that is produce during the 

execution of the system, ge contains no more that f 

faulty replicas up until the later of the following two 

events: 1) every non-faulty node in epoch e+1 that 

needs state from ge has completed state transfer, or 2) 

the last client freshness certificate for epoch or any 

earlier epoch expires at any non-faulty client c that 
accesses data stored by ge [7]. 
 

F. Storage System 

Ocean Store is a two-tiered system BFT storage system. 

The primary tier of replicas offers strong consistency for 

mutable data using the PBFT protocol and the secondary 

tier serves static data, and thus, has simpler semantics. 

There have been proposals for dynamic replication 

protocols that tolerate crash failures.  
 

VI.  METHODOLOGIES 

A. Reliable Automatic Reconfiguration 

In this Module, it provides the abstraction of globally 

consistent view of the system membership. This 

abstraction simplifies the design of applications that use it, 

since it allows different nodes to agree on which servers 

are responsible for which subset of the service. It is 

designed to work at large scale, e.g., tens or hundreds of 

thousands of servers. Support for large scale is essential 
since systems today are already large and we can expect 

them to scale further. It is secure against Byzantine 

(arbitrary) faults. Handling Byzantine faults is important 

because it captures the kinds of complex failure modes 

that have been reported for our target deployments. 

 

B. Tracking Membership Service 

In this Module, is only part of what is needed for 

automatic reconfiguration. We assume nodes are 

connected by an unreliable asynchronous network like the 

Internet, where messages may be lost, corrupted, delayed, 
duplicated, or delivered out of order. While we make no 

synchrony assumptions for the system to meet its safety 

guarantees, it is necessary to make partial synchrony 

assumptions for liveness. The MS describes membership 

changes by producing a configuration, which identifies the 

set of servers currently in the system, and sending it to all 

servers. To allow the configuration to be exchanged 

among nodes without possibility of forgery, the MS 

authenticates it using a signature that can be verified with 
a will-known public key. 

 

C. Byzantine Fault Tolerance 

In this Module, to provide Byzantine fault tolerance for 

the MS, we implement it with group replicas executing the 

PBFT state machine replication protocol. 

These MS replicas can run on server nodes, but the size of 

the MS group is small and independent of the system size. 

So, to implement from tracking service,  
 

Add-It takes a certificate signed by the trusted authority 

describing the node adds the node to the set of system 

members. 
 

Freshness-It receives a freshness challenge; the reply 

contains the nonce and current epoch number signed by 

the MS. 
 

Probe-The MS sends probes to servers periodically. It 

serves respond with a simple acknowledgement or when a 

nonce is sent, by repeating the nonce and signing the 

response. 
 

New Epoch-It informs nodes of a new epoch. Here 

certificate vouching for the configuration and changes 

represents the delta in the membership. 
 

D. Dynamic Replication 

In this Module, to prevent attacker from predicting 

1. Choose the random number. 

2. Sign the configuration using the old shares. 

3. Carry out a re-sharing of the MS keys with the new 

MS members. 

4. Discard the old shares. 
 

VII.  CONCLUSION 

This paper presents a complete solution for building large 

scale, long-lived systems that must preserve critical state 

in spite of malicious attacks and Byzantine failures. The 

membership service tracks the current system membership 

in a way that is mostly automatic, to avoid human 

configuration errors. It is resilient to arbitrary faults of the 

nodes that implement it, and is reconfigurable, allowing us 

to change the set of nodes that implement the MS when 

old nodes fail, or periodically to avoid a targeted attack. 
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